291 research outputs found

    Regular coordinate systems for Schwarzschild and other spherical spacetimes

    Get PDF
    The continuation of the Schwarzschild metric across the event horizon is almost always (in textbooks) carried out using the Kruskal-Szekeres coordinates, in terms of which the areal radius r is defined only implicitly. We argue that from a pedagogical point of view, using these coordinates comes with several drawbacks, and we advocate the use of simpler, but equally effective, coordinate systems. One such system, introduced by Painleve and Gullstrand in the 1920's, is especially simple and pedagogically powerful; it is, however, still poorly known today. One of our purposes here is therefore to popularize these coordinates. Our other purpose is to provide generalizations to the Painleve-Gullstrand coordinates, first within the specific context of Schwarzschild spacetime, and then in the context of more general spherical spacetimes.Comment: 5 pages, 2 figures, ReVTeX; minor changes were made, new references were include

    Spherically Symmetric Black Hole Formation in Painlev\'e-Gullstrand Coordinates

    Full text link
    We perform a numerical study of black hole formation from the spherically symmetric collapse of a massless scalar field. The calculations are done in Painlev\'e-Gullstrand (PG) coordinates that extend across apparent horizons and allow the numerical evolution to proceed until the onset of singularity formation. We generate spacetime maps of the collapse and illustrate the evolution of apparent horizons and trapping surfaces for various initial data. We also study the critical behaviour and find the expected Choptuik scaling with universal values for the critical exponent and echoing period consistent with the accepted values of γ=0.374\gamma=0.374 and Δ=3.44\Delta = 3.44, respectively. The subcritical curvature scaling exhibits the expected oscillatory behaviour but the form of the periodic oscillations in the supercritical mass scaling relation, while universal with respect to initial PG data, is non-standard: it is non-sinusoidal with large amplitude cusps.Comment: 12 pages, 7 figure

    Integrable dynamics of a discrete curve and the Ablowitz-Ladik hierarchy

    Get PDF
    We show that the following elementary geometric properties of the motion of a discrete (i.e. piecewise linear) curve select the integrable dynamics of the Ablowitz-Ladik hierarchy of evolution equations: i) the set of points describing the discrete curve lie on the sphere S^3, ii) the distance between any two subsequant points does not vary in time, iii) the dynamics does not depend explicitly on the radius of the sphere. These results generalize to a discrete context our previous work on continuous curves.Comment: LaTeX file, 14 pages + 4 figure

    A Secret Tunnel Through The Horizon

    Full text link
    Hawking radiation is often intuitively visualized as particles that have tunneled across the horizon. Yet, at first sight, it is not apparent where the barrier is. Here I show that the barrier depends on the tunneling particle itself. The key is to implement energy conservation, so that the black hole contracts during the process of radiation. A direct consequence is that the radiation spectrum cannot be strictly thermal. The correction to the thermal spectrum is of precisely the form that one would expect from an underlying unitary quantum theory. This may have profound implications for the black hole information puzzle.Comment: First prize in the Gravity Research Foundation Essay Competition. 7 pages, LaTe

    Einstein's Real "Biggest Blunder"

    Full text link
    Albert Einstein's real "biggest blunder" was not the 1917 introduction into his gravitational field equations of a cosmological constant term \Lambda, rather was his failure in 1916 to distinguish between the entirely different concepts of active gravitational mass and passive gravitational mass. Had he made the distinction, and followed David Hilbert's lead in deriving field equations from a variational principle, he might have discovered a true (not a cut and paste) Einstein-Rosen bridge and a cosmological model that would have allowed him to predict, long before such phenomena were imagined by others, inflation, a big bounce (not a big bang), an accelerating expansion of the universe, dark matter, and the existence of cosmic voids, walls, filaments, and nodes.Comment: 4 pages, LaTeX, 11 references, Honorable Mention in 2012 Gravity Research Foundation Essay Award

    Sthenic incompatibilities in rigid bodies motion

    Get PDF
    When a rigid body slides with friction on a surface, hopping motion is observed: this is an everyday phenomenon. In rigid bodies mechanics, this phenomenon appears when it is no longer possible to compute the reaction contact forces. The difficulty is overcome by a motion theory involving velocity discontinuities. Velocity discontinuities may result either from an obstacle which makes impossible to compute the acceleration: this is a cinematic incompatibility or from the impossibility to compute the reaction forces: this is a sthenic incompatibility. We describe two examples: the Klein and Painlevé sthenic incompatibilities. Springer 2006

    Cauchy-perturbative matching revisited: tests in spherical symmetry

    Get PDF
    During the last few years progress has been made on several fronts making it possible to revisit Cauchy-perturbative matching (CPM) in numerical relativity in a more robust and accurate way. This paper is the first in a series where we plan to analyze CPM in the light of these new results. Here we start by testing high-order summation-by-parts operators, penalty boundaries and contraint-preserving boundary conditions applied to CPM in a setting that is simple enough to study all the ingredients in great detail: Einstein's equations in spherical symmetry, describing a black hole coupled to a massless scalar field. We show that with the techniques described above, the errors introduced by Cauchy-perturbative matching are very small, and that very long term and accurate CPM evolutions can be achieved. Our tests include the accretion and ring-down phase of a Schwarzschild black hole with CPM, where we find that the discrete evolution introduces, with a low spatial resolution of \Delta r = M/10, an error of 0.3% after an evolution time of 1,000,000 M. For a black hole of solar mass, this corresponds to approximately 5 s, and is therefore at the lower end of timescales discussed e.g. in the collapsar model of gamma-ray burst engines. (abridged)Comment: 14 pages, 20 figure

    Movable algebraic singularities of second-order ordinary differential equations

    Full text link
    Any nonlinear equation of the form y''=\sum_{n=0}^N a_n(z)y^n has a (generally branched) solution with leading order behaviour proportional to (z-z_0)^{-2/(N-1)} about a point z_0, where the coefficients a_n are analytic at z_0 and a_N(z_0)\ne 0. We consider the subclass of equations for which each possible leading order term of this form corresponds to a one-parameter family of solutions represented near z_0 by a Laurent series in fractional powers of z-z_0. For this class of equations we show that the only movable singularities that can be reached by analytic continuation along finite-length curves are of the algebraic type just described. This work generalizes previous results of S. Shimomura. The only other possible kind of movable singularity that might occur is an accumulation point of algebraic singularities that can be reached by analytic continuation along infinitely long paths ending at a finite point in the complex plane. This behaviour cannot occur for constant coefficient equations in the class considered. However, an example of R. A. Smith shows that such singularities do occur in solutions of a simple autonomous second-order differential equation outside the class we consider here

    Acoustic analogues of black hole singularities

    Full text link
    We search for acoustic analogues of a spherical symmetric black hole with a pointlike source. We show that the gravitational system has a dynamical counterpart in the constrained, steady motion of a fluid with a planar source. The equations governing the dynamics of the gravitational system can be exactly mapped in those governing the motion of the fluid. The different meaning that singularities and sources have in fluid dynamics and in general relativity is also discussed. Whereas in the latter a pointlike source is always associated with a (curvature) singularity in the former the presence of sources does not necessarily imply divergences of the fields.Comment: 9 pages, no figure

    Hawking radiation as tunneling from a Vaidya black hole in noncommutative gravity

    Full text link
    In the context of a noncommutative model of coordinate coherent states, we present a Schwarzschild-like metric for a Vaidya solution instead of the standard Eddington-Finkelstein metric. This leads to the appearance of an exact (t−r)(t - r) dependent case of the metric. We analyze the resulting metric in three possible causal structures. In this setup, we find a zero remnant mass in the long-time limit, i.e. an instable black hole remnant. We also study the tunneling process across the quantum horizon of such a Vaidya black hole. The tunneling probability including the time-dependent part is obtained by using the tunneling method proposed by Parikh and Wilczek in terms of the noncommutative parameter σ\sigma. After that, we calculate the entropy associated to this noncommutative black hole solution. However the corrections are fundamentally trifling; one could respect this as a consequence of quantum inspection at the level of semiclassical quantum gravity.Comment: 19 pages, 5 figure
    • 

    corecore